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AIIItnICt-The paper presents a study of the large deftection collapse of circular rinp confined in
a rigid cavity under external pressure. The ring is assumed to be inextensional and to have an initial
localized imperfection which causes a small section of its circumference to be detached from the
confining wall. The cavity formed is pressurized and its growth examined. The formulation is
general enough to allow for large deflections of the ring as well as material nonlinearities,

The pressure v's change in volume response of the confined ring is found to be characterized
by a limit load for both elastic and inelastic material behavior. The limit load is shown to be
dependent on both the geometry of the initial imperfection as well as the yield aDd post yield
characteristics of the ring material. The response beyond the limit load is unstable until the crown
of the ring touches the opposite side after which it becomes stable again.

NOTATION
£ Young's Modulus
£' post yield slope of multilinear (1-(. curve
H horiziontal force at any point in the ring
n fmHR/t101 2
M moment
g 6M/(1ot 2

N number of descretion
P pressure
P fm2R2P/t2t10

Pc limit pressure
R ring radius
S mid-plane ring coordinate
s S/nR

S·, s· S, s at ring separation point, respectively
t ring thickness
II £/£'

ll* 8(S·)
p. defined in Fig. 6

( strain
80 8 for undeformed ring
" curvature"I curvature at on-set of unloading
~ cartesian coordinate defining imperfection
a stress

ao yield stress

INTRODUCTION

Many long, tunnel,.like structures built unclerIrouad are lined with thin-walled cylindrical
shells. Depending on the application. the liners aerveas either PRlSlure containment vessels
or as structural supports safeparding the intepity of the circular pometry of the hole. In
the applications of intaat, the lining is lfOuted in pJac:e with oementwllicb results in a
continuous and circular cavity with which the eben is in contact. s..p.of this type of
structure are oil. gas. steam and water weD cuiDI[l,2]; tunnelJ ud ducts used in
hydroelectric plants [3. 4]. conventional and nuclear power plants[S. 6J. etc.

In all applications mentioned. conditions can develop in which pressure builds up in the
interface of the cement cavity and the liner or casing (see [7]). Usually severe enough
imperfections exist that buckling of the liner can result. Many investigators have in the past
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dealt with the problem ofpredicting the buckling pressure as a function of the imperfections.
In [8.9] the problem was idealized as a thin elastic circular ring embedded in a "smooth"
rigid contacting confining cavity. Estimates of the buckling pressure asa function of the
initial imperfections were obtained and design rules established. More recently, Yamamoto
and Matsubara extended the results to a section of confined shell supported at the ends by
bulkheadsl5]. The effect of plastic deformation on the buckling load was also
considered [6].

Kyriakides and Babcock, in a short reference to this class of problems(IO], presented
experimental evidence which indicates that long confined shells under external pressure can
develop a buckle which propagates. The characteristics ofthis phenomenon are very similar
to those of the propagating buckle experienced mainly in offshore pipelines(IO, 11]. The
collapse process gets initiated from a local, but substantial, dent or damage on the confined
shell and driven by pressure it propagates within the confines of the cavity and can
potentially destroy the whole structure. The nature of the problem is illustrated in Fig. 1
which shows a series of cross sections through which a section of the collapsed tube
undergoes as it is collapsed by a propagating buckle ofthis type. A more detailed description
of the phenomenon is given in [7].

The present study is motivated by this phenomenon. Due to the difficulties involved in
pursuing a large deflection, plastic analysis of the complete confined shell, it is felt that a
great deal of insight into the problem can be gained by first examining in detail the<large
deflection response ofa thin, inelastic confined ring under external pressure. A correspond
ing study for the propagating buckle proved to be very successful in the past [1(}-15]. In what
follows a thin-walled inextensional ring confined in a circular contacting cavity is consid
ered. A local imperfection is introduced to the ring geometry by assuming part of the ring
to be initially detached from the wall of the cavity. The ring is pressurized through this
cavity. The problem is formulated through a large displacement formulation and solved
numerically. Both elastic and inelastic material behavior for the ring are considered.

A great deal of insight into the buckling characteristics of confined rings can be gained
from a review ofa very rich literature on the subject. Although reference to all related works
is not attempted, particular reference must be made to the works of Hsu Lo et al. [16] who
considered the postbuckling configurations of a thermally heated confined ring; Hsu et
al.l17], Buckiarelli and Pian [18], and Chan and McMinn[19] considered theeffectofinitial
imperfections on the limit load type of buckling exhibited by thisproblem;zagustin and
Herrmann[20] presented an analytical approach to finding the response of a confined ring
to a gravity type ofloading. EI-Bayoumy considered the same thermal problem through an
energy formulation [21].

Fig. I. Sections through profile of confined propagating buckle.
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An interesting conclusion drawn by a number ohbCse invcs~gators (see also [22]) is that
a uniformly loaded (e.g. thermal load) circular confined ring exhibits no classical bifurcation
load. A limit load type of buckling (snap-through) is, however, possible with the presence
of initial geometric imperfections. The limit load is a function of the geometry of the
imperfection.

THE PROBLEM

We consider a thin, inextensional ring of radius R, thickness I and unit width, confined
in a circular, contacting cavity (Fig. 2). In the unloaded stress-free state, the ring has a
small geometric imperfection extending over a section of length 2Soand having amplitude
£to which causes the ring to be locally detached from the confining wall of the cavity. The
imperfection is assumed to be formed inextensionally from a circle of radius R. The
imperfection is symmetric about an axis through the center of the ring. The problem
consists of finding the response of this ring to external pressure. The pressure is assumed
to be built up inside the cavity formed between the rigid wall and the detached portion
of the ring.

It is assumed that the ring deformations will remain symmetric with respect to the
X-axis (Fig. 2) and, as a result, only half of the ring is considered. It is also assumed that
at any given load, the ring domain is clearly divided into the detached section AB (see Fig.
3) and section Be which remains everywhere in contact to the wall. Pressure is only applied
to section AB. The rigid confining wall can react to normal loads, but the contact with
the ring is assumed to be frictionless.

The problem is formulated within the customary small strain and negligible shear
deformations assumptions of beam theory. Geometric nonlinearities are introduced by
allowing for large deflections (finite rotations).

GEOMETRY

As in all contact problems, a suitable solution procedure has to overcome the difficulty
of not knowing a priori the domain of the problem. This difficulty is overcome by
incrementally fixing the domain by prescribing the separated length of ring. Thus, by
prescribing AB to have a length S·, point B is also fixed to be at an angle cx· (Fig. 3).

It can easily be shown that for inextensional deformations of the detached section, the
position of any point (X, Y) relative to the cartesian frame shown in Fig. 3, is described
by dX

- = -sinO
dS '

dY
dS=cosO,

Fig. 2. Initial ICODlCUy or imperfect confined riD••
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Fig. 3. Defonned configuration of a confined ring which has an initial imperfection.

Fig. 4. Equilibrium of an elemental segment of detached ring section.

where S is the measure of length along the perimeter of the deformed ril1gand 8 is tile
local angle formed between the outward normal to the ring midsurface the X~rection

(Fig. 4).
The initial imperfection used affects a length 2Soand has initial amplitudeJo. The same

shape function was used as in [18]. It represents an imperfection with only one point of
inflection and with positive curvature at A (see the Appendix).

Equilibrium equations
The equilibrium equations can easily be derived from Fig. 4 as:

dH
-= -Pcos8
dS '

dV p. 8
dS= - sm,

~~ = H cos 8 + V sin 0,

dP
dS=O.

(2)

Constitutive behavior
Both elastic and inelastic material behavior for the ring are considered. The constitutive

equations are simplified considerably by considering only bending deformations and
stresses. This is a reasonable assumption for relatively thin rings for which the mean stress
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through the thickness is only a small fraction of the material yield stress. The stress-strain
behavior of the ring is approximated with linear segments as shown in Fig. 5(a). For plastic
behavior an intermediate hardening rule is used. The thickness integrated stress-strain
relationships yield the following moment-curvature relationships:

M = M(a., K, K.),
where

M =6M /(10/2, K= ICIE/2(10 and a. =E/E';

the local curvature IC(S) is given by:

dOo dO
IC(S) = dS - dS'

(3)

(4)

(5)

where dOo/dS is the curvature of the undeformed configuration. K1 is a history dependent
parameter necessary for plastically deformed sections and represents the maximum value
of curvature reached by that section (see Fig. 5b). For strictly linear elastic material
behavior (3), reduces to:

M=K.

For nonlinear elastic behavior (3) becomes

M = M(a., K).

(6)

(7)

This is represented by OABF in Fig. 5(b) for both loading and unloading. Complete
expressions for eqns (3), (6) and (7) have been presented in [13]. Reference [23] has
extended these to include isotropic and kinematic hardening rules.

Equations (1)-(5) non-dimensionalized in the way shown below become:

dx . n
-= -SI017
ds '

d

(0) d- ~

dy
ds = cos 0,

dB
-= -p cosO
ds '

dil . n
-= -p St017
ds '

F

Os s Ss·

M

I

(blJA-R

• F

(8)

Fig. 5. Constitutive relationships.
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dM<is =1/ cos e+ jJ sin e,

dp =0
ds '

de deo (R)(UO) _- =- - 2n - - R(rx M R)ds ds / E "I'

s = S/nR, x =X /nR, y = Y/nR,

1/ =6nRH/uot
2

, jJ =6nRV/uo/ 2,

p =61t2(!!.)2 p.
t Uo

(9)

Boundary conditions
If the length of the detached section of the ring is prescribed to be s*, then the point

of liftoff from the wall can be defined by an angle a *=s *. At this point continuity of
displacement, slope and curvature are required leading to the development of a concen
trated shear force. Using these assumptions and symmetry conditions at s.= 0 the
following boundary conditions must be satisfied by the solution

1/(0) =0,

8(0) = 0,

y(O) =0,

M(s*) =0,

8(s*)=a*,

x(s*) = (cos a*)/n,

y(s*) = (sin a*)/n.

(10)

Equations (8)-(10) constitute a two point boundary value problem which is solved
numerically. The solution procedure involved expressing (8) in a forward difference fonn
and solving the resulting nonlinear algebraic equations numerically using Newton's
method. The interval s£ [0, s*] was descritized into N points. An incremental type of
solution procedure was used where the problem domain s* was gradually increased and
for each new value the solution was seeked.

The solution procedure started by increasing the initially detached length So by. As; thus
s*-'so+ As. The first initial guess was provided by guessing the value ofthepressure p
and based on this approximate value for the other variables were obtained using simple
curved beam theory. For all subsequent increments of s* the solution for the preceding
configuration, suitably extended, was used as initial guess. This solution process was

r
, {3-

{~-- ~p-
~;.f~: __ -.::: =- -=-_::::::L_--...l---,.- ._.l- . _

CA •

Fig. 6. Problem geometry after first touchdown.
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repeated until the ring collapsed to a point where the crQwn of the ring touched the
opposite wall for the first time. For the solutions beyond this point the boundary value
problem solved had to be modified to accommodate the new contact area that develops
around point A. It was assumed that further deformation will force part ofthe ring to come
into contact with the opposite wall and conform to the circular shape of the wall as shown
in Fig. 6. In addition, the thickness of the ring walls is neglected and both sections of the
ring along AA' are assumed to be one radius away from the undeformed ring center.

The problem becomes one degree more difficult because in the configuration shown in
Fig. 6 in addition to not knowing the position of point B, the position of point A' is also
unknown. This difficulty was resolved as follows. We start by prescribing the length of the
section of the ring that has touched the opposite side (Le. the length of AA') as ,. Thus,
the boundary conditions at A' become:

xC,) = (cos P·)/1t,

yeO =(sin P*)/1t, where P* = (l - ,)n,

o(e) = p*,
(lIa)

Although the position of point B is not known, it is known that the boundary conditions
at that point should be

a (s *) := 0,

O(s*)::= lX*,

x(s*):= (cou*)/n,

y(s*) ::= (sin lX *)/1t,

lX* = s*n
(lIb)

where the value ofs· remains an unknown. We proceed by guessing a value for s· (usually
take it to be equal to its value in the previous converged solution). This fixes the problem
domain and the values of (J Ib). However, to avoid overdetennining the problem, one
boundary condition has to be relaxed. The first of (lIb) was chosen as the most suitable.
thus. a(s·) =0 is not enforced during the iterative solution. Thus. (8) with (lla and lIb)
are solved as before. After a converged solution is obtained, the value of Ai(s·) is
compared to zero. Typically Ai(s·):F O. With all other variables the same a new value of
s· is selected and the problem solved again. This procedured continues until the value of
Ai(s·) satisfies the zero condition to a prcdecided tolerance. By using the method of"false
position" the number of iteration for convergence to the correct value of s· was 3-5.
Further collapse of the ring was achieved by increasing the value of, by .:1, and repeating
the procedure. It must be emphasized that due to the nature of the problem. convergence
was found to be very sensitive to the choice of increments of s· before touchdown and
of , after touchdown. An indication of the difficulties involved wiU be given in the next
section.

RESULTS AND DISCUSSION

(a) Linearly .tic case
We first CODSider a material with linearly elastic constitutive behavior (represented by

(6». Equaoou (8}-(IO) were solved using the procedure de8cribed above. The pressure v's
chanF in volume response of the ring with a given imperfection is Ibown in Fig. 7. The
response is characterized by a sharp rise to a limit Joad and a sharp drop down to a
relatively low pressure "plateau" at which most of the deformation takes place. The limit
load can be considered as the collapse pressure of the ring with the Jiven imperfection.
The response of the ring becomes unstable beyond this point. The limit load is strictly a
function of the initial imperfection and this dependence is examined in more detail below.
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Fig. 7. Pressure v's volume change (linearly elastic case).

For a ring with no initial imperfection the response's stable branch (pressure axis) and the
unstable branch only meet a 00, as the response does not exhibit bifurcation points. The
response for the perfect case is also plotted in Fig. 7. Comparison between the response
of the perfect and imperfect geometries indicates that for larger deformations the effect
of the imperfection on the response is small.

After first touchdown the ring response becomes again stable. This can be explained
by the fact that the ring section is now supported at both ends, A and B in Fig. 6.

Due to the sharp rise to and sharp descent from the limit load exhibited by the
response, the solution convergence around the limit load becomes very sensitive to the
increment of S· applied. A very fine descritization of the initial imperfection and a very
gradual increase of s· in the vicinity of the limit load were necessary. The unstable part
of the response did not exhibit any numerical difficulties. After point A touched the
opposite wall eqn (8) with boundary conditions (11) were solved according to the modified
procedure described above. The solution was &pin very sensitive to the increment of ~

used. It was found necessary to introduce an auxilliary step in which the curvature at ~ = 0
was reduced in three steps from its value at first contact to the final value of -IIR. The
procedure was continued by gradually incrementing~. It was observed that for the elastic
case, point B started receding back up the cavity wall in essence decreasing S·.

After a small touching segment was established, a third touchdown point developed
somewhere between A' and B. Configurations beyond this point were not attempted. A
set of ring collapse configurations including a few after touchdown, are shown in Fig. 8.

A limited study of the dependence of the ·response on the initial imperfections was
carried out by varying the imperfection parameters eSo and So. Figure 9 shows a family of
response curves (pressure v's crown displacement) where So was kept constant and eSovaried
between 0.0067 and 0.0112. The limit load is seen to be affected by the value of eSo, but
the remainder of the response are seen to coalesce to a common value. The variation of
the detouched length with pressure for the same set of parameters is shown in Fig. 10.
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Fig. 8. Confined ring collapse configuration sequence (linearly elastic case).
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Fig. 9. Pressure v's crown displacement (linearly elastic case) for different values of 00'

Due to the nature of imperfection used. the range of imperfection amplitude (150) that
can be achieved for a fixed imperfection length (So) is limited. For this reason both
parameters had to be varied in order to achieve a broad enough study of the imperfection
sensitivity of the limit load. The results of this study are summarized in Fig. 11 where the
limit load is plotted as a function of 150 for a range of values ofSo. The discontinuous results
have been bounded with an envelope that might prove useful for design purposes. Note
that for small values of both So and 60 the limit load tends to increase substantially. For
large enough parameters the limit load tends to a relatively constant value. The sensitivity
of the limit load to the choice of imperfection shape made was not examined.
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Fig. 10. Pressure v's separated length (linearly elastic case) for different values of boo
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(b) Nonlinear elastic case
Nonlinear elastic material behavior was also modeled by a bilinear stress-strain curve

as shown in Fig. 5. For such a material both loading and unloading are assumed to occur
along the same path. The constitutive equations for this material are

The solution procedure used was similar to the one described in the previous section.
The nature of the response has the same main characteristics (limit load, pressure plateau,
etc.) as the elastic case. Convergence of the iterative solution scheme used was found to
be more sensitive to the size of the domain increment Lis (the control parameter of the
solution procedure) around the limit load. In addition, for higher values of ex the growth
of the detached section of ring almost ceases close to touchdown. As a result, using s*
as the control parameter was not very convenient. For this reason, the crown depth S was
used as the control parameter for part of the response. This required a procedure similar
to the one described above for the response of the ring beyond first touchdown.

Figure 12 shows a family of responses for different values of the strain hardening
parameter ex. The value of the limit load is very sensitive to the value of ex when « is close
to I. The limit load decreases sharply as « increases from 1and becomes almost insensitive
to the value of « when « reaches around 80 and beyond. Looking at the minimum loads
reached by the curves, it can be seen that the minimum loads are also affected by the value
of «. In Fig. 13 the parameter (101E is varied. The effect of higher yield stress is to increase
both the limit and minimum loads of the response.

Elastic-plastic case
Elastic-plastic material behavior differs from the nonlinear elastic model described

above in that it allows for elastic unloading and permanent deformation of the material.

50

t (f-)' 1
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3

o .2 .3 .4 .5 .6 .7
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Fig. 12. Pressure v's crown displacement for different values of strain hardeninS (non-linear elastic
case).
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Fig. 13. Pressure v's crown displacement for different values of (10/£ (non-linear clastic case).

The constitutive relations used are represented by (3) and (4), (the equations have been
developed in [13]). The solution procedure is basically the same as in the case of the
nonlinear elastic problem. However, much bigger computer memory is required as all
previous solutions are stored in order to compare with the current one. During the iterative
procedure, the moment at every nodal point is compared to that of the previous converged
solution at the same point. If the moment is found to be greater than the one from the
previous equilibrium state, the constitutive law based on OAF (Fig. Sb) is used. If not, the
point is undergoing unloading, thus it is forced to follow the path ABC. If a point first
undergoes unloading and then is subjected to reloading before it reached C, it is forced
to return back along CBF. Since the path ABC depends on the point of unloading, B, the
value of curvature at p, iC., is stored and is updated if it changes. In some of the cases
considered, the direction of bending changed more than once in which case the same
reverse loading procedure described above was applied to points along BCD.

A typical response obtained for this type of material behavior is shown in Fig. 14. The
main characteristics of the response are unchanged. However, the convergence of the
iterative scheme became even more sensitive to the size of domain increment Lts. As in the
elastic cases, very small size of increment was required to locate the limit load. If too large
an increment was used, the equilibrium would jump from the stable to the unstable branch
without going through the limit load. Difficulty in convergence also occurred for values
of s· over 0.6. In this vicinity the size of increments used was as small as 1/30-1/150 of
that used in the linearly elastic case. As a result, the solution procedure was much slower.
For this reason the alternate procedure of incrementing ~ instead of s· proved more time
efficient in spite of having to deal with two nested iterations.

The response obtained for the elastic-plastic case is compared with the corresponding
responses for the two elastic cases considered in Fig. 14. The elastic-plastic case and
nonlinearly elastic cases have very similar responses before and close to the limit load. This
is to be expected because at this early stage no material unloading has yet developed. As
the deformations grow the elastic-plastic response becomes stiffer than the nonlinear
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Fig. 14. Pressure v's crown displacement for different material models.
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Fig. 16. Collapse sequence (elastic-plastic case).
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Fig. 17. Coordinates of imperfection (5 - O.

elastic case. This is due to the hardening that sections of the deformed ring undergo as
a result of reverse bending. The linearly elastic case plotted on the same figure exhibits
a substantially higher limit load and a much higher postbuckling collapse pressure.

A family of responses for different values of (lo/E for the elastic-plastic material are
plotted in Fig. 15. The value of (lo/E is varied from 2.0 x 10-3 to 8.0 X 10-3 with an other
parameters kept constant. It is clear that the value of (lo/E affects both the limit load as
well as the remainder of the large deflection response. The effect of the material on the
collapse configurations is shown in Fig. 16. If compared with the ones presented for the
elastic case (Fig. 8) the crown of the deforming ring is found to undergo more extreme
deformations in the case of this material.

CONCLUSIONS

The large deflection response of thin-walled confined rings under external pressure has
been obtained numerically. The ring has been assumed to remain inextensionaJ. This step
is crucial for the kinematics of the ring assumed. It is however restrictive as to the range
ofD /t that the analysis can be applied to. The response of the ring under external. pressure
was found to be characterized by a limit load and an unstable post limit 10a<1 response
until the deformation caused points on the ring walls to come into contact after which the
path became stable again. The characteristics of the response are retained for linearly
elastic, nonlinear elastic and elastic-plastic material models.
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APPENDIX
The imperfection shape function used is the same as the one developed in [181. It is symmetric about the x-axis

and is assumed to be formed inextensionally from the perfectly circular ring geometry. The imperfection is defined
through the following expressions (see Fig. 17).

:;: 0; i {p[cos(4.493 ~) - cos 4.493] - I}
:; 0;~ { - ~+ 4.~93 [sin ( 4.493~) - 4.493~ cos 4.493]}

where So and p are the two parameters that can be varied. 2So represents the length of the ring affected by
imperfection. Pmust be bigger than 0.822 in order to have a change in sign of curvature along the length of
the imperfection. In the notation developed in the paper

d2~

dBo d;i

dS =[1 +(:;)J~'
which can be obtained from (A I).


